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ABSTRACT

Recently, micro-rotation confocal microscopy has en-

abled the acquisition of a sequence of slices of non adherent

living cells obtained during a partially controlled rotation

movement of the cell through the focal plane. Although we

are now able to estimate the 3D position of every slice with

respect to the frame, the reconstruction of the cell from the

positioned slices remains a problem that this paper address.

In our context, 3D spatially-varying PSF and missing data

are the two main particularities of this problem. Experiments

illustrate the ability of the classical EM algorithm to decon-

volve efficiently cell volume and also to deal with missing

data.

Index Terms— Micro-rotation confocal microscopy, de-

convolution, interpolation, 3D spatially-varying PSF, missing

data, non-organized data.

1. INTRODUCTION

Our microscope is equipped with a di-electrophoretic field

control microelectrode cage which enables trapping of non

adherent living cells [1, 2, 3]. Once a cell has been trapped, it

undergoes continuous unstable rotations around a main axis

[4]. During the rotation, a sequence of microscopic images

(Sk)1≤k≤N is obtained through the fixed focal plane F at a

given rate. Each image is taken under the same microscopic

conditions. Fig.2 (first column) shows four images extracted

from a sequence of 340 slices per turn of a cell in rotation.

Among the advantages of such an apparatus, is the ability to

alleviate the problem of anisotropy of the microscope resolu-

tion : the resolution perpendicular to the focal plane is half

of the resolution within the focal plane [?]. That is translated

into the microscope PSF which is mainly elongated along the

z-axis.

Since the images are all recorded in the fixed plane F ,

their positions inside the cell are unknown. However, these

positions can be estimated using the method presented in [5].

So, here, we assume that the images have been aligned accor-

ding to these positions. The situation where the cell is rota-

ting and F is fixed is equivalent to the dual situation where

the cell is fixed and F is rotating. Throughout these lines, we

adopt the dual case. With this viewpoint, we understand that

the PSF whose main axis is perpendicular to the focal plane,

is spatially-varying : each image has its own oriented PSF.

Another particularity arises from our microscope equipment.

When F turns around an axis which is not included into it,

a part of the 3D space is not covered by the moving plane.

Since no data are captured in this area, a ”black hole” is ap-

parent in the 3D cell representation when this artefact is not

treated (see Fig.3, column 1). The main contribution of this

paper is to deal with the spatially-varying PSF and missing

data.

In §2, we propose a geometric set-up to link the slices

to the 3D cell volume and an algorithm to perform the 3D

volume deconvolution. In §3 we show that the 3D deconvolu-

tion allows to dramatically improve the quality of the cross-

sections, improve the quality of the volume reconstruction if

compared to other attempts, and eventually allow under some

given restrictions to interpolate the cell voxels when no data

are available. Furthermore, contrary to many others proposi-

tions, our volume deconvolution does not use any regulariza-

tion constraint. Finally we present our concluding remarks in

§. 4.

2. MICRO-ROTATION IMAGE DECONVOLUTION

2.1. Spatially-varying PSF

Recall that we assume the cell is fixed and the focal plane

is rotating. In fact, the focal plane is assimilated to a square

grid, that is, the image acquisition grid. In a given frame R=
(oxyz), let m be the unknown cell volume defined on a square

3D grid G, such that the reference focal plane F is contained

in (oxy). Fk denotes the positions of the moving focal plane

supporting the image Sk. When the focal plane is moving, the
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shape of the PSF Ψk remains unchanged but its orientation

changes according to the movement of the focal plane since

the main axis of the PSF is always perpendicular to Fk. Com-

puting 3D image convolution with such a varying PSF is quite

calculation intensive. So, we use the following scheme which

allows to use only the PSF Ψ associated to the reference focal

plane F .

For every positioned focal plane Fk, let us define a 3D

square grid Gk such that two faces are parallel to Fk and are

at equal distance to Fk. The node values of Gk are obtained

by interpolation from those of G :

mk = Akm , (1)

where the interpolation operator Ak depends only on the geo-

metric application between G and Gk. If Hk is the linear ope-

rator associated to the PSF Ψk, with respect to the frame Gk,

we consider the model

IE[Sk] = PHmk , (2)

where Sk is the random vector whose Sk is an occurrence. P
is the slice operator P : R

d3 −→ R
d2

. Behind this formula is

Ψk � m = Ψ � mk. Finally, we get

IE[Sk] = PHAkm . (3)

which modelizes the relationship between the data and the

unknown volume. Below, we shall denote Hk = PHAk.

Fig. 1. Focal plane movement and black hole.

2.2. Deconvolution in the case of missing data

Image deconvolution is an old problem for which a well-

known solution is given by the EM algorithm [6, 7]. Usually,

in such a framework, the hidden variables mi’s have same

locations than the observable variables. In this context, the

EM algorithm is a means to formalize and stabilize the Lucy-

Richardson algorithm [8, 9] rather than to deal with missing

data. In our case, m is defined over the grid G which is lar-

ger than the data support F = {Fk} and furthermore some

data are missing when a black hole is present. In this situa-

tion, the EM algorithm becomes completely justified and then

we really take advantage of its property to deal with missing

data [10]. Procedures for deconvoluting images in the case

of non-organized and non-uniform data include the OS-EM

algorithm [11].

Let us recall briefly the EM algorithm for deconvolution

as introduced in [7]. For every site i ∈ F and j ∈ G, let xij

be the number of photons received at i and coming from j.

The observations are then given by Sk
i =

∑
j xij and we as-

sume that xij is the occurrence of a Poisson random variable

P(Hk
ijmj). Under the hypothesis of independence, Sk

i is the

occurrence of the Poisson random variable P(
∑

j Hk
ijmj).

From this model, we aim to find an estimate of m that

maximizes the likelihood of p(S|m). The general EM algo-

rithm [6] works with the following expected log-likelihood

Q(m|m(t)) = IE [log(p(x|m))|S,m(t)] , (4)

with respect to the conditional distribution p(x|S,m(t))
where m(t) is a current estimate. Starting with a given ini-

tial estimate m(0), at each iteration t, one proves that the

likelihood p(S|m(t)) increases.

By derivating expression (4), we find the classical update

formula for a single voxel mr, in which the PSF is in the

micro-rotation case depending of its spatial position :

mr(t + 1) = mr(t)

∑
k,j Hk

r,j
Sk

j∑
l Hk

l,jml(t)∑
k,j Hk

r,j

.

By denoting ./ the element-wise division and defining α
so that αi =

∑
k,j Hk

i,j , we can use matrix notation for the

update step :

m(t + 1) = (m(t)./α)
∑

k

(Hk)�
(
Sk./(Hkm(t))

)
.

Such a writing helps to implement the algorithm using the

FFT, and thus allows acceptable computational times.

We have to emphasize that our deconvolution process

does not integrate any regularization component. Since re-

gularization is well known to be crucial to solve inverse

problems (see [10, 12] among many others), in our firsts

experiments, we have tested the role of regularization com-

ponents and in particularly the total variation term as in [13].

But, on the light of the experimental results, we consider this

regularization has no benefit effect for micro-rotation volume

deconvolution.
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3. EXPERIMENTS AND RESULTS

3.1. Data vs. estimate comparison

The first round of experiments aims to test the quality of

the results. We compare the original data (slices obtained by

the microscope) with slices in the estimate 3D images, taken

at the same position. Results are shown in Fig. 2. The decon-

volution process reveals details of the cell, like swellings or

folds of the cell membrane.

Fig. 2. Comparison of micro-rotation slices (first column)

with the corresponding slice in the volume estimate (second

column). The difference of view between two successive rows

corresponds to a quarter-turn of the focal plane.

3.2. Comparison with other reconstruction method

In this round of experiments, we compare our results with

the estimate obtained by another approach [5]. This recons-

truction method is obtained with Gaussian kernels and does

not deal with the PSF problem. The advantage of our ap-

proach is two-fold. First, more details are visible, which is the

expected result of the deconvolution. Second, our approach

has an interpolation effect that deals with the missing data. On

some views of the left column of Fig. 3, a black hole is visible.

Such an artefact occurs when the focal plane turns around an

axis that is not included in it : part of the 3D space (which

has the shape of a cone) is not covered by the moving plane.

Since no data are captured in this area, the simple interpola-

tion approach replaces it by a black hole. On the contrary, the

deconvolution approach uses the PSF to propagate informa-

tion and find an estimate of the voxel values at those locations

(and thus fill the black hole).

Fig. 3. Comparison of two reconstruction methods. Slices on

the left are taken from the volume obtained by interpolation

with Gaussian kernels. Slices on the right are taken from the

volume obtained by the EM deconvolution process.

4. CONCLUSION

Deconvolution of micro-rotation image series, as presen-

ted here, yields a striking improvement in data quality inclu-

ding a strong reduction in 2D out-of-focus blur. This is due

to efficient 3D light reconstruction whereby the PSF geome-

try and pitch orientation guides accurate 3D reassignment of

out-of-focus light emanating from fluorescent features of in-

terest. A most unexpected observation, and apparently pecu-

liar to this novel imaging modality is the remarkable efficacy
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of light reconstruction by deconvolution. We show that in the

case where information is lost in micro-rotation feature re-

construction due mainly to incomplete sampling near the ro-

tation axis ( i.e. the black-hole artefact) that such information

is fully recovered by the deconvolution process. This novel

interpolation effect presumably arises due to the rotating PSF,

and to our knowledge has yet to be characterized. Further,

we find the counter-intuitive result whereby regularisation as

total variation does not yield significant improvement over

the micro-rotation deconvolution. Our results suggest decon-

volution of micro-rotation image series open some exciting

new avenues for further analyses, ultimately laying the way

towards establishing an enhanced resolution 3D light micro-

scopy.
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